Excel to PDF .Net

(Multi-platform .Net library)
SautinSoft

Linux development
manual

Table of Contents
1. Preparing €NVIFONMENTcc.ooiirieieieieee et sss s ssesssssesssnsens 2

1.1. Check the installed Fonts availability. ... 3
2. Creating "Convert Excel to PDF" @ppliCatioN ... sessessesssssenes 5

https://www.sautinsoft.com/

1. Preparing environment

In order to build multi-platform applications using .NET Core on Linux, the first steps are for

installing in our Linux machine the required tools.

We need to install .NET Core SDK from Microsoft and to allow us to develop easier, we will
install an advance editor with a lot of features, Visual Studio Code from Microsoft.

Both installations are very easy and the detailed description can be found by these two links:

Install .NET Core SDK for Linux.

Windows

Linux

NET

MNET Core is a cross-platform version of .NET for building

Core

NET Core 2.2

websites, services, and console apps.

Build Apps @

Run Apps @

Install VS Code for Linux.

Once installed VS Code, you need to install a C# extension to facilitate us to code and

debugging:

Install C# extension.

Install .MET Core SDK

Install .MET Core Runtime

https://dotnet.microsoft.com/download
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://dotnet.microsoft.com/download

1.1.

Check the installed Fonts availability

Check that the directory with fonts "/usr/share/fonts/truetype” is exist.

Also check that it contains *.ttf files.

If you don't see this folder, make these steps:

1.
2.

Download the archive with *.ttf fonts: https://sautinsoft.com/components/fonts.tar

Uncompress the downloaded font's archive to a directory and add it to the font path,

a list of directories containing fonts:

tar xvzf

. Create a directory for new fonts

mkdir /usr/share/fonts/truetype

Move the uncompressed font files to the new font directory

mv *.ttf /usr/share/fonts/truetype

. Navigate to the font directory

cd /usr/share/fonts/truetype
Create fonts.scale and fonts.dir
mkfontscale && mkfontdir
fc-cache
Add the new font directory to the X11 font path
chkfontpath --add /usr/share/fonts/truetype

Restart X font server

/etc/rc.d/init.d/xfs restart

You can verify the successful addition of the new path by running chkfontpath

command or by listing X font server's /etc/X11/XF86Config file.

If you do not have root access, copy the *.ttf to ~/.fonts directory instead.

With these steps, we will ready to start developing.

https://sautinsoft.com/components/fonts.tar

In next paragraphs we will explain in detail how to create simple console application. All of
them are based on this VS Code guide:
Get Started with C# and Visual Studio Code

Not only is possible to create .NET Core applications that will run on Linux using Linux as a
developing platform. It is also possible to create it using a Windows machine and any

modern Visual Studio version, as Microsoft Visual Studio Community 2017.

https://docs.microsoft.com/en-us/dotnet/core/tutorials/with-visual-studio-code

2. Creating “Convert XLSX to PDF” application

Create a new folder in your Linux machine with the name excel to pdf.

For example, let’s create the folder "excel to pdf' on Desktop (Right click-> New Folder):

Mew Folder

Folder name

‘ excel ko pdf ‘

Open VS Code and click in the menu File->Open Folder. From the dialog, open the folder

you've created previously:

File Edit View Go Debug

@ Mew File Ctri+N

” aw -Il."".ll | n |j oW ':: t I | + E I-'I | I:I:_ H

Open File... CErl+0

Open Folder... CErl+K Etr‘[{O

AT

u

Open Workspace...

Open Recent

Next you will see the similar screen:

Activities Visual Studio Code ~ Thu07:23 @
excel to pdF - Visual Studio Code

File Edit Selection View Go Debug Terminal Help

@ EXPLORER

~ OPEN EDITORS
/O ~ EXCELTO PDF

%

(RN} » OUTLINE

(L] @040

Now, open the integrated console — the Terminal: follow to the menu Terminal -> New

Terminal (or press Ctrl+Shift+’):
Terminal Help Program.cs - |

New Terminal Cerl+Shift+

Split Terminal [:} Cerl+Y,

Create a new console application, using dotnet command.

Type this command in the Terminal console: dotnet new console

Restore completed in 445.88 ms for /home/jorgen/Desktop/excel to pdf/excel to pdf.csproj.
Restore succeeded.

jorgen@jorgen-linux: N |
A new simple Hello world! console application has been created. To execute it, type this

command: dotnet run

Hello World!

jorgen@jorgen-linux:

You can see the typical “Hello world!" message.

Now we are going to convert this simple application into something more interesting.
We'll transform it into an application that will convert a xlIsx file to a pdf file.

First of all, we need to add the package reference to the sautinsoft.exceltopdf assembly
using Nuget.

In order to do it, follow to the Explorer and open project file “excel to pdf.csproj”

Add these lines into the file "excel to pdf.csproj”:

<ItemGroup>
<PackageReference Include="sautinsoft.exceltopdf” Version="5.2.3.5" />

</ItemGroup>

It's the reference to sautinsoft.exceltopdf package from Nuget.
At the moment of writing this manual, the latest version of sautinsoft.exceltopdf was
5.2.3.5. But you may specify the latest version, to know what is the latest, follow:

https://www.nuget.org/packages/sautinsoft.exceltopdf/

At once as we've added the package reference, we have to save the “excel to pdf.csproj”
and restore the added package.
Good, now our application has the reference to sautinsoft.exceltopdf package and we can

write the code to convert xlIsx to pdf and other formats.

https://www.nuget.org/packages/sautinsoft.exceltopdf/

Follow to the Explorer, open the Program.cs, remove all the code and type the new:

EXPL F Program.cs @

4 OPEN EDITORS 1UNSAVED
.
4 EXCEL-TO-PDF
b .vscode
bin
obj void ExcelToPdf.ConvertFile(string excelPath,
Excel-To-PDF.csproj Progra string outPath)
@ test xl;‘ outPath: Path to output document

=1 ligaras) Convert Excel file to PDF, Word file. PDF file will be created by

component or overwritten if already exist

1tinSoft.ExcelToPdf X
x.ConvertFile(@"/ho Or¢ Desktop/Exc To-PDF/test.xls",)
Console.WriteLine(

PROBLEMS 1

4 € Program.cs (1

© ; expected [Excel-To-PDF]

The new code;

using System;
using System.IO;
using SautinSoft;

namespace Excel to PDF

{

class Program

{

static void Main(string[] args)

{
ExcelToPdf x = new ExcelToPdf();
x.PageStyle.PageSize.Letter();

// Set PDF as output format.
x.0OutputFormat = SautinSoft.ExcelToPdf.eOutputFormat.Pdf;

// Let's convert only 1lst sheet.
x.Sheets.Custom(new int[] { 1 });

string excelFile = @"/home/jorgen/Desktop/test.xlsx";
string pdfFile = Path.ChangeExtension (excelFile, ".pdf");

try

{
x.ConvertFile (excelFile, pdfFile);
System.Diagnostics.Process.Start (pdfFile);

}

catch (Exception ex)

{
Console.Writeline (ex.Message) ;
Console.ReadLine () ;

}
To make tests, we need an input XLSX document. For our tests, let's place a PDF file with

the name "test.pdf” at the Desktop.

excel to
pdf

X

test.xlsx

test.pdf

If we open this file in the default Excel Viewer, we'll its contents:

Activities LibreOffice Calc ~ ThuoT:42e

test.xlsx - LibreOffice Calc

File Edit View Insert Format Styles Sheet Data Tools Window Help

g == : == 5 =
- s X B g4 W B-E NAATNBAR Q4R - BE-7- A
~fw |~ BI UA-®&-=s==5 =S == F-%74[[7 0009 2=¢ O-ZE-2- =/-
~ fx £ = v
B [mmams D E F G H I J K L M N o P Q R s T [
<
Sample Excel Worksheet Y ,
Created with Microsoft Excel 2003 SP1 A
RANDOM -
L)
fu
0.19616| 0.80813 0.09910] 0.21764|
0.64993 0.72014 0.92075] 0.15284|
0.57058| 0.57077 0.44887| 0.48382
0.81448] 0.58253 0.89688] 0.50755|
0.22009] 0.41308| 0.56686] 0.61931]
0.45622 0.87099) 0.62317] 0.91563
0.66547| 0.60188]
L
I
=+ | Sheet1 Sheet 2 Sheet 3
Sheet 1 of 3 | | PageStyle_Sheet 1 | English (USA) | [1o]®m]| | Average: ; Sum: 0 | = Cr + | 100%

Launch our application and convert the “test.xsIx” into “test.pdf”, type the command:

dotnet run

ore completed in 445.88 ms for /home/]

orgen-Llinux:

If you see the message “"Converting successfully!”, everything is fine and we can check the

result produced by the Excel to PDF .Net library.

The new file “test.pdf” has to appear on the Desktop:

excel to
pdf

X

test.xlsx

test.pdf

Open the result in PDF Viewer:

Activities B Acroread ~ ThuoT:41e

test.pdf - Adobe Reader

File Edit View Document Tools Window Help

test.pdF & |

H& |6 e/ (@@ 5 (] [-
é @ You are viewing this document in PDF/A mode.

& = Sample Excel Worksheet
= Created with Microsoft Excel 2003 SP1

’— RANDOM

2C
o 0.53825] 0.74149
et 0.64014] 0.40239 0.70681] 0.08267
" 0.59312[0.27506 0.15193] 0.33364
0.18985] 0.68035 0.77954| 0.36677
0.76372| 0.63843 0.13999] 0.87459
0.39851] 0.04410 0.89696] 0.42483
I e 0.39843] 0.86120 0.78006] 0.93774
3 |e | 0712190153231 0.79670] 0.84132

Well done! You have created the “Excel to PDF" application under Linux!

If you have any troubles or need extra code, or help, don't hesitate to ask our SautinSoft

Team at support@sautinsoft.com.

mailto:support@sautinsoft.com

