
1

Ciansoft PDFBuilderASP User Manual
(Version 2.3)

Introduction

Ciansoft PDFBuilderASP is a COM Object that enables PDF files to be created. It is primarily
intended to be used on a web server running ASP (either classic ASP or ASP.NET) or an alternative
scripting language. This document contains comprehensive instructions on installing and using
PDFBuilderASP.

For further information, visit our website: www.ciansoft.com.

Alternatively, contact us by email, we will be pleased to answer your questions: info@ciansoft.com.

How to Use This Manual

The first part of this manual explains how to start using PDFBuilderASP. This describes installation of
the component, the basic approach to creating a PDF document, and information about the trial version.
We especially recommend reading 1.2 Steps to Create PDF Documents first in order to understand the
general principles of using this component.

After that, the remainder of the manual describes all the available functions. For each function, details
as shown below are available:

PageHeight [Real] Page [Integer] - Read/Write Property.

The height of the page referenced by Page in the units of measure currently set by the property Units.

Example: Set the width of page number 2 to 5 inches and the height to 7 inches:

objPDF.Units = 1
objPDF.PageWidth(2) = 5.0
objPDF.PageHeight(2) = 7.0

A complete Alphabetical List of Functions can be found at the end of this document.

Throughout the document example code is given to show the syntax for classic ASP (using VBScript)
and ASP.NET (using Visual Basic.NET) but other scripting languages can equally well be used.

The name of
the function

The data type of the
property, or data type
returned by the method

A description of
the function

For some functions,
a code example
showing the syntax
for both classic
ASP and ASP.NET

The names and data types
of any parameters used
when calling the function

The type of function
(method, read-only
property, or read/write
property)

Reference to
another function

http://www.ciansoft.com/
mailto:info@ciansoft.com

2

TABLE OF CONTENTS

1. GETTING STARTED... 3

1.1. INSTALLATION .. 3
1.2. STEPS TO CREATE PDF DOCUMENTS.. 3
1.3. THE TRIAL VERSION... 4
1.4. CREATING AN INSTANCE OF THE OBJECT.. 4

2. MANAGING PAGES IN THE DOCUMENT... 5

3. WORKING WITH IMAGES ... 8

3.1. COMPRESSION OF IMAGE DATA .. 10

4. WORKING WITH GRAPHICS... 12

5. WORKING WITH TEXT... 14

5.1. ADDING HYPERLINKS IN TEXT.. 18

6. SPECIFYING COLOURS .. 19

7. GENERATING THE PDF DOCUMENT.. 20

8. GENERAL DOCUMENT FUNCTIONS... 22

9. REVISION HISTORY .. 23

10. ALPHABETICAL LIST OF FUNCTIONS... 24

3

1. Getting Started

1.1. Installation
PDFBuilderASP is distributed as an archive file in ZIP format (PDFBuilderASP.zip). This archive
contains the following files:

PDFBuilderASP.dll: The component
PDFBuilderASP User Manual.pdf: These instructions
Licence_xxx.txt: A copy of the licence agreement

The DLL file, PDFBuilderASP.dll, must be registered on the server or other computer running the
script or application. To do this, the command line utility Regsvr32.exe can be used. This is usually
found in the Windows system folder and runs using the syntax:

regsvr32 dllname

where dllname is the path and name of the dll file to register.

The application using the component must have appropriate permissions. This means that for use in
ASP, the Internet Guest User account on the server must have Read and Execute permissions on the
DLL file. Appropriate permissions must also be set if the component is to be used to read or write files
on the server.

As a COM object, PDFBuilderASP can be used in a range of other Windows based environments and
languages, but for form based languages such as Visual Basic or Delphi, we recommend using its sister
product, the ActiveX control PDFBuilderX instead.

1.2. Steps to Create PDF Documents
An instance of PDFBuilderASP created in a script represents a single PDF document. In order to
create and save a document, the following steps must be followed:

1. Configure document settings such as the default page size and units of measure.
2. Add pages to the document.
3. Add objects to the document that are to be written on the pages. This can include images,

graphics or blocks of text. These objects are referred to as “Resources”.
4. Draw resources onto the pages.
5. Stream the file to the browser or save it to disk.

Resources are added to the document in different ways. For images, the AddImageFile function can be
used to add an image from a file on disk. Graphics and blocks of text are created using the
CreateGraphic or CreateText functions, with further functions then being used to draw the graphic or
add the text block content.

All resources are allocated a unique identifying number. This is the return value of the function used to
add or create the resource.

Resources are drawn on pages using the ApplyResource function. This function also returns a
reference number, which can then be used to identify the object on the page. This reference number is
used when calling functions to change the position or size of the object as it is displayed on the page.

Note that this reference number is not the same as the number that identifies resources in the document
as a whole and should not be confused with it. To help clarify this issue, parameters used in functions

http://www.ciansoft.com/pdfbuilderx/default.asp

4

will usually be called Resource where they refer to a resource identifier, Page where they refer to a
page number and Index where they refer to an object on a page.

A resource can be used as many times as necessary, either on the same page, or on multiple pages.
This is useful, for example, for setting up headers and footers on pages of a document, or for displaying
an image full size on one page and as a thumbnail elsewhere in the document.

An example ASP script showing how a simple document involving images, graphics and text is created
and displayed in the browser is available on our web site.

Similar example scripts are available for ASP.Net and for PHP. Other examples can be accessed from
the PDFBuilderASP product page.

1.3. The Trial Version
The trial version of PDFBuilderASP is supplied as a different DLL file, called
PDFBuilderASPTrial.dll. The trial version has all the functionality of the full version of the
component. The only limitation is that each page of PDF files created using the component will have a
line of text written on it indicating that trial software was used. Visit www.ciansoft.com to purchase
the full version.

1.4. Creating an Instance of the Object
Before PDFBuilderASP can be used in an ASP script an instance of the object must be created using
the Server.CreateObject command. The syntax for this is:

Set objPDF = Server.CreateObject("PDFBuilderASP.PDFSvrDoc")

Where objPDF is a variable name. Any variable name can be used, but we usually use the variable
name “objPDF” in code examples in these instructions and elsewhere on our web site.

For the trial version, the syntax is:

Set objPDF = Server.CreateObject("PDFBuilderASPTrial.PDFSvrDoc")

In ASP.NET, a Dim statement must be used with the following syntax:

Dim objPDF = Server.CreateObject("PDFBuilderASP.PDFSvrDoc")

or,

Dim objPDF = Server.CreateObject("PDFBuilderASPTrial.PDFSvrDoc")

http://www.ciansoft.com/samples/pbaspdemo1.htm
http://www.ciansoft.com/samples/pbaspnetdemo1.htm
http://www.ciansoft.com/samples/pbaphpdemo1.php
http://www.ciansoft.com/pdfbuilderasp/default.asp
http://www.ciansoft.com/pdfbuilderasp/buy.asp

5

2. Managing Pages in the Document
The following functions are used to add pages to the document, to change the page sizes and to adjust
the position and size of objects on a page. Note that the functions Locate, ScaleObject and Rotate can
be applied to images and text, but not to graphics.

AddPage Page [Integer] - Method.

Adds a new page to the document. The position of the page in the document is defined by Page. If
Page is 0, the page will be added at the end of the document. The page size is initially defined by the
DefaultPageSize property, but can be modified after the page has been added.

Example: Add a new page at the end of the document:

Classic ASP:
objPDF.AddPage 0

ASP.NET:
objPDF.AddPage(0)

PageSize [Integer] Page [Integer] - Read/Write Property.

The size of the page referenced by Page. The possible values are listed below.

0 Page size is defined by the PageWidth and PageHeight properties
1 A4 Portrait (210 mm x 297 mm)
2 A4 Landscape (297 mm x 210 mm)
3 Letter Portrait (8.5” x 11”)
4 Letter Landscape (11” x 8.5”)
5 A3 Portrait (297 mm x 420 mm)
6 A3 Landscape (420 mm x 297 mm)
7 A5 Portrait (148.5 mm x 210 mm)
8 A5 Landscape (210 mm x 148.5 mm)
9 Tabloid Portrait (11” x 17”)
10 Tabloid Landscape (17” x 11”)
11 Legal Portrait (8.5” x 14”)
12 Legal Landscape (14” x 8.5”)
13 Statement Portrait (5.5” x 8.5”)
14 Statement Landscape (8.5” x 5.5”)
15 Executive Portrait (7.25” x 10.5”)
16 Executive Landscape (10.5” x 7.25”)

Example: Set the size of page number 2 of the document to be A3 Landscape:

objPDF.PageSize(2) = 6

PageWidth [Real] Page [Integer] - Read/Write Property.

The width of the page referenced by Page in the units of measure currently set by the property Units.

PageHeight [Real] Page [Integer] - Read/Write Property.

The height of the page referenced by Page in the units of measure currently set by the property Units.

Example: Set the width of page number 2 to 5 inches and the height to 7 inches:

objPDF.Units = 1
objPDF.PageWidth(2) = 5.0
objPDF.PageHeight(2) = 7.0

6

DefaultPageSize [Integer] - Read/Write Property.

The page size that will be used for new pages as they are added to the document. See PageSize for
definition of possible values. (Default = 1, A4 Portrait).

Example: Set the default page size to US Letter size (8.5” x 11”):

objPDF.DefaultPageSize = 3

ApplyResource [Integer] Page [Integer], Resource [Integer] - Method.

Applies the resource referenced by Resource to the page referenced by Page. The resource is applied
using default sizing and positioning which can then be modified using the Locate or ScaleObject
functions. The return value of this method indicates the index number of this specific instance of the
resource on this specific page.

Example: Apply a text block referenced by the resource number Text1 (which is the return
value of the CreateText method) to page 1 of the document:

Classic ASP:
TextIndex = objPDF.ApplyResource 1, Text1

ASP.NET:
TextIndex = objPDF.ApplyResource(1, Text1)

Locate Page [Integer], Index [Integer], X [Real], Y [Real] - Method.

The object referenced by Index on the page referenced by Page will be positioned on the page. If the
object is an image or a left-justified text block, its top-left corner will be at the co-ordinates X, Y
measured from the bottom-left corner of the page. If the object is a centred or right-justified text block,
then the co-ordinates will refer to the top-centre or top-right of the object instead.

Example: Locate the text block that was applied in the above example, so that it is positioned
in the top-left corner of the page. Note the use of the PageHeight property to determine how
far the top of the page is from the bottom of the page that is used as the reference point:

Classic ASP:
objPDF.Locate 1, TextIndex, 0.0, objPDF.PageHeight(1)

ASP.NET:
objPDF.Locate(1, TextIndex, 0.0, objPDF.PageHeight(1))

ScaleObject Page [Integer], Index [Integer], ScaleFactor [Real] - Method.

The object referenced by Index on the page referenced by Page will be scaled. ScaleFactor is a
percentage value, so an object will be displayed at normal size if this value is 100. For example, to
display an image as a thumbnail, one eighth of its normal size, use a ScaleFactor of 12.5, i.e., 100/8.

Example: Scale the text block that was applied in the above examples, so that it is displayed at
twice its original size:

Classic ASP:
objPDF.ScaleObject 1, TextIndex, 200.0

ASP.NET:
objPDF.ScaleObject(1, TextIndex, 200.0)

7

Rotate Page [Integer], Index [Integer], Angle [Real] - Method.

The object referenced by Index on the page referenced by Page will be rotated counter-clockwise by
Angle degrees. The object pivots on its top-left corner.

Example: Rotate the text block that was applied in the above examples, so that it is inclined
10 degrees counter-clockwise from the horizontal:

Classic ASP:
objPDF.Rotate 1, TextIndex, 10.0

ASP.NET:
objPDF.Rotate(1, TextIndex, 10.0)

8

3. Working with Images
Images can be added to the document as resources either by reading image files in a supported format
from disk, by copying a bitmap in memory as a bitmap handle or by reading an image stored as an
array of bytes in memory.

AddImageFile [Integer] FileName [String] - Method.

Adds an image from a file on disk as a resource in the document. The return value of the function is
the resource identifying number. Images in the following file formats can be used: .bmp, .tif, .jpg,
.png, .gif, .pcx, .psd, .wbmp. FileName is a String and must be a complete path to the file including the
file extension.

Example: Read a GIF file from the server directory where the ASP script is located, and store
the resource number referencing the image in the variable Logo:

Logo = objPDF.AddImageFile(Server.MapPath("mylogo.gif"))

AddImageBMPHandle [Integer] Handle [Integer] - Method.

Adds an image referenced by a bitmap handle. This can be used to transfer an image to
PDFBuilderASP directly from another component used for processing images, without the need to save
the image to disk and read it back into memory. The return value of the function is the resource
identifying number.

Example:

Image1 = objPDF.AddImageBMPHandle(ImgHandle)

AddImageBytes [Integer] ImageData [Variant] - Method.

Adds an image currently held in memory as an array of bytes. This method might typically be used
when images are retrieved from a database as binary data. The return value of the function is the
resource identifying number.

Example:

Image1 = objPDF.AddImageBytes(Data)

ReleaseBMPHandle [Boolean] - Read/Write Property.

This property is used to determine whether the handle is released to its original owner when the
AddImageBMPHandle function is used. If True, then the original owner is responsible for clearing the
image from memory when it is no longer needed. (Default = True).

Example:

objPDF.ReleaseBMPHandle = False

ImageReadNumber [Integer] - Read/Write Property.

When adding an image resource from a TIFF file containing multiple images, this property indicates
the number of the image in the file that is to be read. (Default = 1).

Example: Select the 3rd image on a TIFF file to be read using AddImageFile:

objPDF.ImageReadNumber = 3
Image1 = objPDF.AddImageFile(Server.MapPath("multipage.tif"))

9

ImageCount [Integer] FileName [String] - Read-only Property.

Gives the number of images contained within a file. Reading of multiple images is only supported for
TIFF files, so this will normally return the value 1 for any other files. FileName is a String and must be
a complete path to the file including the file extension.

Example:

NImages = objPDF.ImageCount(Server.MapPath("multipage.tif"))

ImageWidth [Real] Resource [Integer] - Read-only Property.

The width of the image resource referenced by Resource in the units of measure currently set by the
property Units.

ImageHeight [Real] Resource [Integer] - Read-only Property.

The height of the image resource referenced by Resource in the units of measure currently set by the
property Units.

Example: Find the width and height of an image previously read from file and referenced by
the variable Image1:

W = objPDF.ImageWidth(Image1)
H = objPDF.ImageHeight(Image1)

SetImageLink Page [Integer], Index [Integer], Link [String] - Method.

Attaches a hyperlink to the image referenced by Index on the page referenced by Page. The parameter
Link is the URL that will be linked to. Link should begin with ‘http://’ for a URL, or alternatively can
be an email address prefixed with ‘mailto:’.

The image must not be rotated. If LinkBorder is True, a rectangular border will be displayed around
the image.

Example:

Classic ASP:
objPDF.SetImageLink 1, ImageIndex, "http://www.ciansoft.com"

ASP.NET:
objPDF.SetImageLink(1, ImageIndex, "http://www.ciansoft.com")

MergeAlpha [Boolean] - Read/Write Property.

Image files in PNG format may include an alpha channel containing transparency data.
PDFBuilderASP does not support alpha transparency, but the image can be made to appear transparent
on a plain background by merging the image with its alpha channel. To achieve this effect, this
property must be set to True before loading the image with the AddImageFile function. The
background colour for the merge must be set using the MergeAlphaColor property. (Default = False).

MergeAlphaColor [OLE Color] - Read/Write Property.

The colour to be used for the background when a PNG image is merged with its alpha channel.
(Default = White).

10

3.1. Compression of Image Data
For most purposes, it is not necessary for the user of PDFBuilderASP to be concerned about the
compression algorithms used for storing images. The default behaviour of the component is
appropriate for most situations.

Images stored in a PDF document will be either uncompressed or compressed using one of the
following methods:

0 Uncompressed.
1 CCITT Group4 compression. Used only for black and white images.
2 ZIP (or Flate) compression.
3 JPEG compression.

Group4 and ZIP are lossless compression methods which means that the full quality of the image is
retained whilst the space occupied by the image on disk is reduced. JPEG compression is a lossy
method which sacrifices some image quality for a significant reduction in size and is commonly used
for full colour or greyscale photographic images.

The compression method can be set for each possible image type independently using the following
properties. Each is an Integer taking a value from 0 to 3 as defined in the above table.

CompressionBW [Integer] - Read/Write Property.

The compression method to be used for storing black and white images in the document.
(Default = 1, CCITT Group4).

Example: Save black and white images uncompressed:

objPDF.CompressionBW = 0

CompressionGray [Integer] - Read/Write Property.

The compression method to be used for storing greyscale images in the document. (Default = 2, ZIP).

Example: Save greyscale images uncompressed:

objPDF.CompressionGray = 0

CompressionIndexed [Integer] - Read/Write Property.

The compression method to be used for storing indexed (paletted) colour images in the document.
(Default = 2, ZIP).

Example: Save indexed images uncompressed:

objPDF.CompressionIndexed = 0

CompressionRGB [Integer] - Read/Write Property.

The compression method to be used for storing full colour images in the document. (Default = 2, ZIP).

Example: Save full colour images using JPEG compression:

objPDF.CompressionRGB = 3

11

UseSourceCompression [Boolean] - Read/Write Property.

If this is set to True, the image compression method used in the source file will be retained if possible.
This is used to avoid unnecessary decoding of images to satisfy the settings of one of the other
compression properties when the image is already compressed using an efficient method.
(Default = True).

Example:

objPDF.UseSourceCompression = False

12

4. Working with Graphics
Graphics are drawings made up of combinations of shapes and lines. When drawing a graphic as a
resource, the size of the page on which the graphic will eventually be displayed should be kept in mind.
The graphic functions require that the co-ordinates of the shapes and lines on the page be specified
during drawing and these co-ordinates cannot be changed using the Locate function when the graphic
resource is later applied to a page. Also, the graphic cannot be resized using the ScaleObject function
nor rotated using the Rotate function.

Typical uses for graphics in a document are the drawing of borders and tables.

CreateGraphic [Integer] - Method.

Creates a new graphic resource. The return value of the function is the resource identifying number.
The value of CurrentGraphic will automatically be set to this value.

Example:

Graphic1 = objPDF.CreateGraphic

CurrentGraphic [Integer] - Read/Write Property.

The reference number of the graphic resource that is currently in use. This must be set before any
drawing is done on the graphic by using the DrawLine, Rectangle functions etc.

Example:

ObjPDF.CurrentGraphic = Graphic1

DrawLine X1 [Real], Y1 [Real], X2 [Real], Y2 [Real] - Method.

Draws a line on the current graphic using the current line settings (LineWidth, LineColor etc.) from co-
ordinates X1, Y1 to X2, Y2.

Example: Draw a line from co-ordinates (10, 100) to (50, 100):

Classic ASP:
objPDF.DrawLine 10.0, 100.0, 50.0, 100.0

ASP.NET:
objPDF.DrawLine(10.0, 100.0, 50.0, 100.0)

Rectangle X1 [Real], Y1 [Real], X2 [Real], Y2 [Real] - Method.

Draws a rectangle on the current graphic using the current line and fill settings (LineWidth, LineColor,
FillColor) with opposite corners at co-ordinates X1, Y1 and X2, Y2.

Example: Draw a rectangle with opposite corners at co-ordinates (10, 100) and (50, 200):

Classic ASP:
objPDF.Rectangle 10.0, 100.0, 50.0, 200.0

ASP.NET:
objPDF.Rectangle(10.0, 100.0, 50.0, 200.0)

13

Circle X [Real], Y [Real], R [Real] - Method.

Draws a circle on the current graphic using the current line and fill settings (LineWidth, LineColor,
FillColor). The circle will be centred at X, Y and have radius R.

Example: Draw a circle with centre at co-ordinates (50, 100) with a radius of 20 units:

Classic ASP:
objPDF.Circle 50.0, 100.0, 20.0

ASP.NET:
objPDF.Circle(50.0, 100.0, 20.0)

Ellipse X [Real], Y [Real], RX [Real], RY [Real], Angle [Real] - Method.

Draws an ellipse on the current graphic using the current line and fill settings (LineWidth, LineColor,
FillColor). The ellipse will be centred at X, Y and have a radius RX in the X-direction, RY in the Y-
direction and will be rotated counter-clockwise through Angle degrees.

Example:

Classic ASP:
objPDF.Ellipse 50.0, 100.0, 20.0, 30.0, 45.0

ASP.NET:
objPDF.Ellipse(50.0, 100.0, 20.0, 30.0, 45.0)

LineColor [OLE Color] - Read/Write Property.

The colour to be used on the current graphic for drawing lines. See 6. Specifying Colours for
examples and explanation of how to define colours in ASP. (Default = Black).

LineWidth [Integer] - Read/Write Property.

The thickness of lines drawn on the current graphic. A value of zero will give a line of the minimum
thickness that can be rendered by the output device. (Default = 1).

Example:

ObjPDF.LineWidth = 2

FillColor [OLE Color] - Read/Write Property .

The colour to be used on the current graphic for filling . See 6. Specifying Colours for examples and
explanation of how to define colours in ASP. (Default = White).

14

5. Working with Text
 Blocks of text can be added to the document as resources. Each block consists of any number of
single lines of text. The lines are written either underneath each other, or appended to the end of the
previous line, depending on the value of AppendText. Within each line of text, a single font, font size
and colour must be used, but these properties can be different for each line of text within the block.
Line spacing and the maximum line width can also be varied within the block. The whole block will
be positioned according to the value of TextAlign.

This means that the procedure for building a block of text should be to set the values of AppendText,
TextFont, TextSize, TextColor, TextUnderline, TextLineSpacing, TextMaxWidth, TextSkewX and
TextSkewY before writing the first line of text. These properties can then be changed as required
before subsequent lines are written. The value of TextAlign can be set at any time prior to generating
the PDF document with either the BinaryWrite, SaveToFile or StreamData command.

Text can be wrapped from one line to the next by setting a value for the TextMaxWidth property.

CreateText [Integer] - Method.

Creates a new text resource. The return value of the function is the resource identifying number. The
value of CurrentText will automatically be set to this value.

Example:

Text1 = objPDF.CreateText

CurrentText [Integer] - Read/Write Property.

The reference number of the text resource that is currently in use. This must be set before writing any
text on the text block, or modifying settings such as TextColor or TextFont.

Example:

ObjPDF.CurrentText = Text1

WriteText Text [String] - Method.

Adds a single line of text to the current text resource. The text will be written immediately below the
last line of text to be written. The first line of text added to the resource will be written at the position
on the page defined by a call to the Locate function.

Example:

Classic ASP:
objPDF.WriteText "A line of text."

ASP.NET:
objPDF.WriteText("A line of text.")

AppendText [Boolean] - Read/Write Property.

If this property is set to True the next line of text will be appended on the end of the previous line,
otherwise it will be written below. (Default = False).

Example:

ObjPDF.AppendText = True

15

TextColor [OLE Color] - Read/Write Property.

The colour to be used on the current text block for text. See 6. Specifying Colours for examples and
explanation of how to define colours in ASP. (Default = Black).

TextSize [Integer] - Read/Write Property.

The size of the text for the current text block, in points. If a block of text is scaled using the
ScaleObject after it is applied to a page, the size of the text will also be scaled accordingly.
(Default = 10).

Example:

ObjPDF.TextSize = 14

TextUnderline [Boolean] - Read/Write Property.

If this property is set to True the text will be underlined. A True Type font must be used if this
property is set to True. (Default = False).

Example:

ObjPDF.TextUnderline = True

TextLineSpacing [Real] - Read/Write Property.

The size of the gap that will be left between the previous line of text and the next line of text to be
written. The value is expressed in terms of percentage of the height of one line of text.
(Default = 15.0).

Example: Double space lines by leaving a gap equal to the height of the text:

ObjPDF.TextLineSpacing = 100.0

TextMaxWidth [Real] - Read/Write Property.

The maximum width of a line of text in the units of measure defined by Units. By setting a value for
this property, long lines of text will be wrapped to use two or more lines. A value of -1 indicates that
no maximum width is set and there will be no wrapping of the text. (Default = -1.0).

To use TextMaxWidth and wrap lines of text, a TrueType font must be used. This property has no
effect with the 14 standard fonts.

Example:

ObjPDF.TextMaxWidth = 150.0

TextAlign [Integer] - Read/Write Property.

This property determines how the lines of text in a text block are positioned relative to each other. It
can take any of the following values:

0 (Default) Left-justified text.
1 Centred text.
2 Right-justified text.

This property cannot be set to different values for each line of text within a single text block.

16

If any of the 14 standard fonts are used in the text block, then the text will always be left-justified. In
order to use centred or right-justified text, a TrueType font must be used.

Example: Centre the text:

ObjPDF.TextAlign = 1

TextSkewX [Real] - Read/Write Property.

Setting this property to a value other than zero will skew the text by the given number of degrees in the
horizontal direction. (Default = 0.0).

Example:

ObjPDF.TextSkewX = 10.0

TextSkewY [Real] - Read/Write Property.

Setting this property to a value other than zero will skew the text by the given number of degrees in the
vertical direction. The main use of this property is to create italic text when using a font that does not
include an in-built italic character set. A typical value to use for italic text is 18.0. (Default = 0.0).

Example: Skew text by 18 degrees to give an italicised effect:

ObjPDF.TextSkewY = 18.0

TextFont [Integer] - Read/Write Property.

Text can be written using any TrueType font previously added to the document by the AddFont
method. Alternatively, any one of the 14 standard Type 1 fonts listed below can be used. The
TextFont property indicates the font to be used for the current text resource.

1 Courier
2 Courier-Bold
3 Courier-BoldOblique
4 Courier-Oblique
5 (Default) Helvetica
6 Helvetica-Bold
7 Helvetica-BoldOblique
8 Helvetica-Oblique
9 Times-Roman
10 Times-Bold
11 Times-Italic
12 Times-BoldItalic
13 Symbol
14 ZapfDingbats

It is strongly recommended that True Type fonts should be used instead of the above standard fonts.
With the use of standard fonts there are restrictions on which of the text handling functions described in
this section can be used.

Example: Select the standard Courier font:

ObjPDF.TextFont = 1

AddFont [Integer] FontName [String] - Method.

Adds a TrueType font from a file on disk. FontName is the full path and name of the font file, which
will usually have a .ttf extension. The return value of the function identifies the font and is used to

17

reference it each time it is used in the document. The Internet Guest User must have read permission
on the font file.

Example: Add the Arial font:

F = objPDF.AddFont(Server.MapPath("Arial.ttf"))

EmbedFont [Boolean] FontNum [Integer] - Read/Write Property.

If this property is set to True for a font that has been added using the AddFont function, the font will be
embedded into the PDF document. This ensures that the font will be available to the end user who is
viewing or printing the PDF, regardless of whether the chosen font is already installed on their system.
If the font is not embedded in the document, and is not available to the end user, the software used to
view or print the document will substitute another font. (Default = False).

Note: Font files can be protected by copyright. Check that you have the legal right to embed the font
file in a PDF document for distribution before doing so.

Example: This code shows how to add a font, select the font for use in the current text
resource, and embed the font file in the PDF document:

F = objPDF.AddFont(Server.MapPath("Arial.ttf"))
objPDF.EmbedFont(F) = True
objPDF.TextFont = F

The following read-only properties retrieve information about the space that text will occupy when
displayed.

TextLineWidth [Real] Text [String] - Read-only Property.

Returns the width that a single line of text will occupy if added using the current values of TextFont
and TextSize, in the units of measure currently set by the property Units. A True Type font must be
used for this property to return a value. The current value of TextMaxWidth is not taken into
consideration when calculating this value.

Example:

W = objPDF.TextLineWidth("A line of text.")

TextBlockWidth [Real] - Read-only Property.

Returns the width that the current text block will occupy when added to a page, in the units of measure
currently set by the property Units. This property requires that only True Type fonts are in use in the
text block, otherwise the value -1.0 will be returned.

Example:

W = objPDF.TextBlockWidth

TextBlockHeight [Real] - Read-only Property.

Returns the height that the current text block will occupy when added to a page, in the units of measure
currently set by the property Units.

Example:

H = objPDF.TextBlockHeight

18

5.1. Adding Hyperlinks in Text
Links to URLs (web addresses) can be included in text blocks by calling the WriteLink method. For
hyperlinks to be used, there are some restrictions on the text formatting. A True Type font must be
used, not a standard font. Also, the text must not be rotated. If these restrictions are not obeyed, then
hyperlinks will revert to normal text.

Links can also be attached to images using the SetImageLink method.

WriteLink Text [String], Link [String] - Method.

This method works in a similar way to the WriteText command, adding a single line of text at the end
of the current text resource. The second parameter Link is the URL that will be linked to by that line of
text in the document. Link should begin with ‘http://’ for a URL, or alternatively can be an email
address prefixed with ‘mailto:’

Example:

Classic ASP:
objPDF.WriteLink "A link to a URL", "http://www.ciansoft.com"
objPDF.WriteLink "An email link", "mailto:info@ciansoft.com"

ASP.NET:
objPDF.WriteLink("A link to a URL", "http://www.ciansoft.com")
objPDF.WriteLink("An email link", "mailto:info@ciansoft.com")

LinkStandardFormat [Boolean] - Read/Write Property.

If this property is set to True, the appearance of all hyperlinks will be determined by the LinkFont,
LinkColor, LinkSize and LinkUnderline properties. If False, then each hyperlink will use the values of
the text formatting properties TextFont, TextColor etc. (Default = True).

LinkFont [Integer] - Read/Write Property.

Sets the font to be used for hyperlinks when LinkStandardFormat is set to True. Usage of fonts is
similar to the TextFont property. Standard fonts cannot be used for hyperlinks, so the minimum value
of this property is 15, which will be the index number of the first font added to the document using
AddFont. (Default = 15).

LinkColor [OLE Color] - Read/Write Property.

The colour to be used for hyperlinks when LinkStandardFormat is set to True. See 6. Specifying
Colours for examples and explanation of how to define colours in ASP. (Default = Blue).

LinkSize [Integer] - Read/Write Property.

The size of the text to be used for hyperlinks when LinkStandardFormat is set to True. (Default = 10).

LinkUnderline [Boolean] - Read/Write Property.

Defines whether or not hyperlinks will be underlined when LinkStandardFormat is set to True.
(Default = True).

LinkBorder [Boolean] - Read/Write Property.

If this property is set to True, hyperlinks will be displayed in the document with a rectangular border.
(Default = False).

19

6. Specifying Colours
In classic ASP, the colour properties (LineColor, FillColor, TextColor) can be defined either in
hexadecimal format or by using the predefined VB colour constants.

Hexadecimal colours are written in the format &HBBGGRR& where BB, GG and RR are the values
for blue, green and red.

Examples:

Set FillColor to black (red, green and blue are all zero)

objPDF.FillColor = &H000000&

or

objPDF.FillColor = vbBlack

Set LineColor to yellow (mixture of green and red)

objPDF.LineColor = &H00FFFF&

or

objPDF.FillColor = vbYellow

In ASP.NET, the rgb function can be used, with the values for red, green and blue specified.

Example:

objPDF.FillColor = rgb(255, 255, 255)

In PHP, hexadecimal notation can be used. The typical syntax would be as follows.

Example:

$objPDF->FillColor = 0xFFFFFF;

20

7. Generating the PDF Document
After the configuration of the PDF document is complete, the document can be generated either by
saving to disk or by sending a data stream to the browser for display or download.

SaveToFile FileName [String] - Method.

Saves the document to disk in PDF format at the path and file name given in FileName.

Example:

Classic ASP:
objPDF.SaveToFile Server.MapPath("NewFile.pdf")

ASP.NET:
objPDF.SaveToFile(Server.MapPath("NewFile.pdf"))

BinaryWrite - Method.

Streams the contents of the current PDF document to the browser by invoking a Response.BinaryWrite
command in ASP. This command also sends appropriate header information and is equivalent to the
following lines of ASP code:

Response.ContentType = "application/pdf"
Response.AddHeader "Content-Disposition", _
"inline; filename=StreamFileName"

[or, depending on value of the StreamInline property,
Response.AddHeader "Content-Disposition", _
"attachment; filename=StreamFileName"]

Response.AddHeader "Content-Length", "Length of the StreamData"
Response.BinaryWrite objPDF.StreamData

This method can only be used in classic ASP. When using other languages, including ASP.NET, the
StreamData property should be used instead.

Example:

objPDF.BinaryWrite

StreamData [Variant] - Read-only Property.

Returns a copy of the PDF document in binary format for streaming to the browser. Note that in
classic ASP, the BinaryWrite command provides a more convenient solution for streaming to the
browser in a single command. It is only necessary to use this property if the HTTP header information
needs to be customised in some way.

Example: The following ASP.NET code streams the document to the browser and is directly
equivalent to using the BinaryWrite command in classic ASP:

Dim OutArray As Array = objPDF.StreamData
Dim ByteArray(OutArray.Length - 1) As Byte
Array.Copy(OutArray, ByteArray, OutArray.Length)
Response.ContentType = "application/pdf"
Response.AddHeader("Content-Disposition", _

"inline; filename=StreamFileName")
Response.BinaryWrite(ByteArray)

21

StreamFileName [String] - Read/Write Property.

The file name that will be used in the “Content-Disposition” line of the HTTP header when the
BinaryWrite command is called. (Default = empty string).

StreamInline [Boolean] - Read/Write Property.

If set to True, the “Content-Disposition” line of the HTTP header when the BinaryWrite command is
called will specify “inline”, otherwise it will specify “attachment”. (Default = True).

22

8. General Document Functions
General functions operating at a document level.

Clear - Method.

Deletes all pages and all resources from the component, allowing a new document to be started.

DeleteAllPages - Method.

Deletes all pages from the component, but retains all resources for use in a new document.

Units [Integer] - Read/Write Property.

The units of measure to be used for sizing and locating all pages and objects in the current document.
It is recommended that this property be set to the preferred value before any pages or resources are
added to the document, and not subsequently changed. The results can be confusing if resources
created using one value for this property are then drawn onto pages using a different value.

This property can take any of the following values:

0 (Default) A point is 1/72 of an inch.
1 Inches. 1 inch = 72 points.
2 Centimeters. 1 cm = 28.3465 points
3 Millimeters. 1 mm = 2.83465 points

All PDF documents generated by PDFBuilderASP use points as the internal unit of measure.
Nevertheless, any of the above options can be used in your application as all conversions will be made
automatically.

All co-ordinates used in the Locate function and graphic drawing functions are based on Units and are
measured from the bottom-left corner of each page.

The following properties allow general information about the document to be included. They are all
strings and their use is self-explanatory. All are empty strings by default.

Title [String] - Read/Write Property.

Subject [String] - Read/Write Property.

Author [String] - Read/Write Property.

Keywords [String] - Read/Write Property.

23

9. Revision History
The current version of PDFBuilderASP is 2.3

New in Version 1.1

Support for TrueType fonts using the AddFont function.
EmbedFont property.
AddImageBytes function.

New in Version 2.0

Improved functionality for writing text blocks including TextAlign and TextLineSpacing functions and
greater flexibility to mix fonts and sizes within a single text block.
Rotate function.
General document information properties (Title, Subject, Author, Keywords).
ImageCount property.

New in Version 2.1

TextMaxWidth property.
TextSkewX and TextSkewY properties.
Circle and Ellipse functions.

New in Version 2.2

Hyperlinks.
TextUnderline property.
TextLineWidth, TextBlockWidth and TextBlockHeight properties.

New in Version 2.3

MergeAlpha & MergeAlphaColor properties.
AppendText property.

PDF (Portable Document Format) is copyright of Adobe Systems Incorporated

24

10. Alphabetical List of Functions
Function Page no.:

AddFont 16
AddImageBMPHandle 8
AddImageBytes 8
AddImageFile 8
AddPage 5
AppendText 14
ApplyResource 6
Author 22
BinaryWrite 20
Circle 13
Clear 22
CompressionBW 10
CompressionGray 10
CompressionIndexed 10
CompressionRGB 10
CreateGraphic 12
CreateText 14
CurrentGraphic 12
CurrentText 14
DefaultPageSize 6
DeleteAllPages 22
DrawLine 12
Ellipse 13
EmbedFont 17
FillColor 13
ImageCount 9
ImageHeight 9
ImageReadNumber 8
ImageWidth 9
Keywords 22
LineColor 13
LineWidth 13
LinkBorder 18
LinkColor 18
LinkFont 18
LinkSize 18

Function Page no.:

LinkStandardFormat 18
LinkUnderline 18
Locate 6
MergeAlpha 9
MergeAlphaColor 9
PageHeight 5
PageSize 5
PageWidth 5
Rectangle 12
ReleaseBMPHandle 8
Rotate 7
SaveToFile 20
ScaleObject 6
SetImageLink 9
StreamData 20
StreamFileName 21
StreamInline 21
Subject 22
TextAlign 15
TextBlockHeight 17
TextBlockWidth 17
TextColor 15
TextFont 16
TextLineSpacing 15
TextLineWidth 17
TextMaxWidth 15
TextSize 15
TextSkewX 16
TextSkewY 16
TextUnderline 15
Title 22
Units 22
UseSourceCompression 11
WriteLink 18
WriteText 14

	Getting Started
	Installation
	Steps to Create PDF Documents
	The Trial Version
	Creating an Instance of the Object

	Managing Pages in the Document
	Working with Images
	Compression of Image Data

	Working with Graphics
	Working with Text
	Adding Hyperlinks in Text

	Specifying Colours
	Generating the PDF Document
	General Document Functions
	Revision History
	Alphabetical List of Functions

